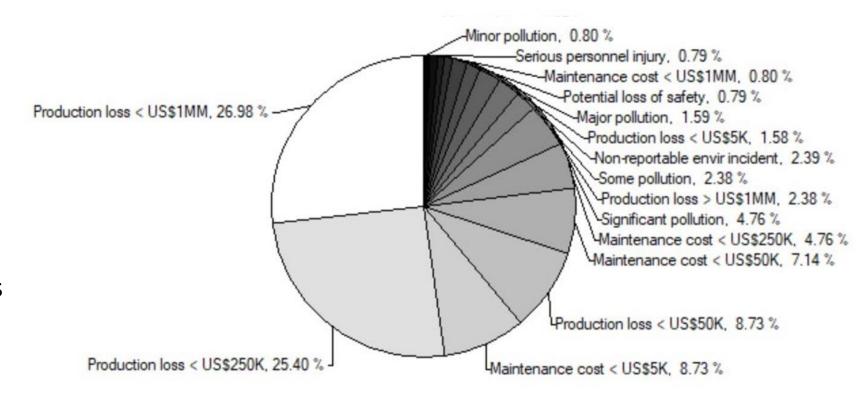
Reliability Dynamics

Industry Standard Solution for Plant Maintenance (ISPM®)

Objectives and Business Benefits:

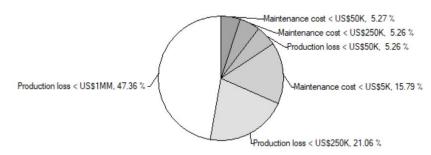

- Use high-quality equipment performance data to optimize equipment decisions and plant operations
- Reduce risk and improve production throughput and profitability

Failure Events versus Consequences - Corporate¹

Key Business Metrics

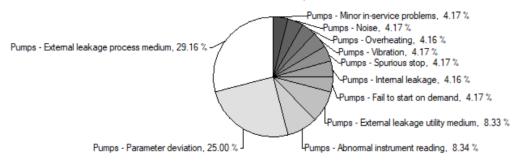
- Corporate view of data
- Identify, analyze, and resolve equipment issues

Notes


1. Value set adapted from ISO 14224:2016, Table C.2

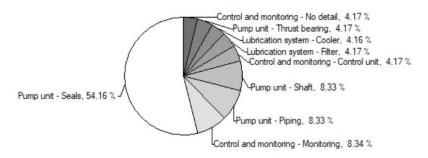
Analyze

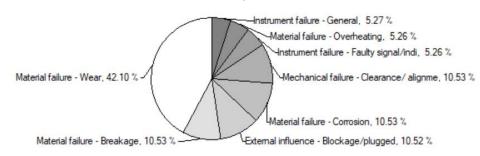
Durco Pumps in Claus Service


Failure Consequences

Ref. ISO 14224:2016, Table C.2

Failure Modes


Ref. ISO 14224:2016, Table B.6


Primary Failure Components

Ref. ISO 14224:2016, Table A.21

Failure Mechanisms

Ref. ISO 14224:2016, Table B.2

Problem

- While Equipment performance data support safety and reliability decisions,
 - High-quality data are unavailable, due to pervasive deficiencies in corporate software solutions
 - Low-quality data compromise equipment decisions, increase risk, and decrease profitability
 - Al and ML models are compromised; only as good as the data inputs

Current Solutions are Nonviable

- While **ERP software** is capable, solutions for equipment performance data are <u>consistently nonviable</u>
- Failure and maintenance event details are impractical to reconstruct after time passes
- Natural Language Processing (NLP) cannot fix poor quality failure and maintenance event data
- Industry databases and handbooks compile low-quality data from a few individual companies

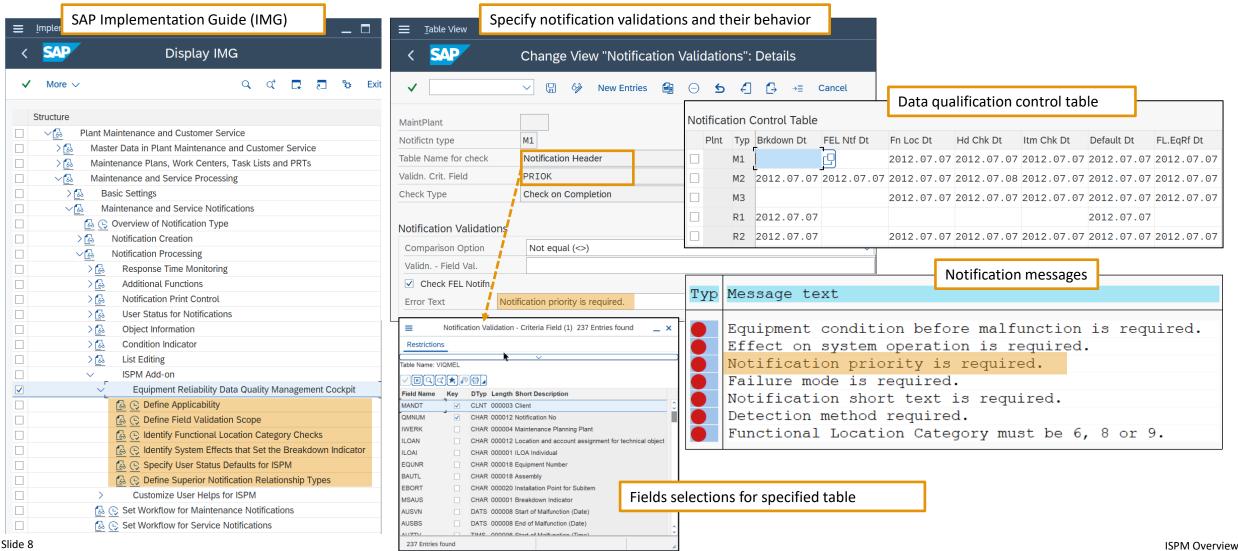
Solution

- Taxonomy and data structure for the digitalization of equipment performance data
- 2. ERP software app to make equipment performance data high-quality at inception

LOWER COSTS

Capital and operating costs

DECREASE RISK


Optimize inspection intervals

INCREASE PRODUCTION

Higher equipment availability

Equipment Performance Data QM Cockpit

© Reliability Dynamics 2021

ISO 14224:2016(E)

Technical Hierarchy Example

✓ ■ 4 LLAK-8400	STEAM GENERATION
> 🗐 5 LLAK-8400-BG	BUILDINGS
> 🗐 5 LLAK-8400-CL	CONTROL UNITS
> 🗐 5 LLAK-8400-CR	CRANES, HOISTS, AND MONORAILS
> 🗐 5 LLAK-8400-FG	FIRE AND GAS DETECTORS
> 🗐 5 LLAK-8400-HB	OTSG STEAM GENERATORS
> 🗒 5 LLAK-8400-HE	EXCHANGERS
> 🗐 5 LLAK-8400-HT	HEAT TRACING
> 🗒 5 LLAK-8400-LI	LIGHTING
> 🗐 5 LLAK-8400-PD	POWER DISTRIBUTION
> 🗎 5 LLAK-8400-PI	8400 PIPING BY COMMODITY
∨ 🖺 5 LLAK-8400-PU	PUMPS
> 🗎 5 LLAK-8400-P-001	LP BFW BOOSTER PUMPS
√ ☐ 5 LLAK-8400-P-002	HP BFW PUMPS Pump boundary
✓	HP BFW PUMP A
> 🐧 10055213 PUMP-UTILI	TY GRADE, MULTISTAGE, RING SEC
> 🎚 7 LLAK-8400-P-002-A-02	PUMP UNIT
> 🎚 7 LLAK-8400-P-002-A-03	CONTROL AND MONITORING
√	LUBRICATION SYSTEM
> 🖩 8 LLAK-8400-E-010-A	COOLER-LUBE OIL-HP BFW PUMP
> 🗐 8 LLAK-8400-F-001-A	FILTER-LUBE OIL-BFW PUMP
> 🗐 8 LLAK-8400-P-004-A	PUMP, LUBE OIL, HP BFW PUMP
> 🗐 8 LLAK-8400-P-005-A	PUMP, LUBE OIL, HP BFW PUMP
> 🗐 8 LLAK-8400-P-006-A	PUMP, HP BFW PUMP AUXILIARY OIL
> 🗐 8 LLAK-8400-RS-001-A	RESERVOIR-LUBE OIL-BFW PUMP
> 🗎 5 LLAK-8421-CM-207	8400-P-005A HP BFW LUBE OIL
> 🗎 6 LLAK-8400-P-002-A-M	MOTOR-HP BFW PUMP A
> 🗎 6 LLAK-8400-CV-001-A	VALVE, CHECK - P-002-A DISCHARGE
> 🗎 6 LLAK-8400-P-002-B	HP BFW PUMP B

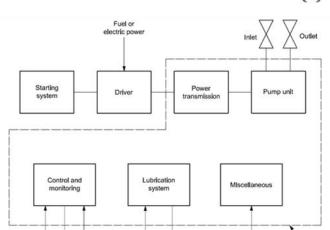


Figure A.7 — Boundary definition — Pumps

Coolant

Remote

instrumentation

Table A.21 - Equipment subdivision - Pumps

Equipment unit	Pumps					
Subunit	Power transmission	Pump unit	Control and monitoring	Lubrication system	Miscellaneous	
Maintainable tems	Gearbox/ variable drive Bearing Seals Coupling to driver Coupling to driven unit Belt/sheave	Support Casing Impeller Shaft Radial bearing Thrust bearing Seals Valves Piping Cylinder liner Piston Diaphragm	Actuating device Control unit Internal power supply Monitoring Sensors * Valves Wiring Piping Seals	Reservoir Pump Motor Filter Cooler Valves Piping Oil Seals	Purge air Cooling/heating system Cyclone separator Pulsation damper Flange joints	

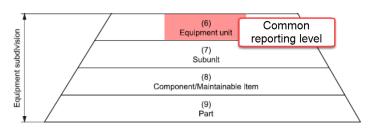


Figure 3 — Taxonomy classification with taxonomic levels

Failure Report Example

- Specifications of required data per work category^{2,3,4}
- Discrete fields with structured input for each required data^{1,2}
- System-validations to ensure compliance with specifications

Notes - ISO 14224:2016

- 1. Table 6 Failure data
- 2. Table 8 Maintenance data
- 3. Table 3 Reliability and maintenance parameters in relation to taxonomy levels

- SAP solution extension, certified for S/4HANA On-premise and Cloud
- ISO 14224:2016 compliant¹
- 19 years of application in industry
- Patented system and methods (US011157519)

Notes:

1. Compliant with ISO/TC67/WG4/PG1 guidance to industry, in ISO Course Use of ISO 14224 for optimizing Safety and Profitability in the Oil and Gas Industry – in a digitalized perspective.

(12) United States Patent Ciliberti, III

(10) Patent No.: US 11.157.519 B2 (45) Date of Patent:

(54) SYSTEM AND METHOD FOR ENTERPRISE ASSET MANAGEMENT AND FAILURE

(71) Applicant: Vito Anthony Ciliberti, III, South

Vito Anthony Ciliberti, III. South

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 524 days.

Prior Publication Data US 2018/0068007 A1 Mar. 8, 2018 Related U.S. Application Data

(63) Continuation of application No. 13/753,495, filed on Jan. 29, 2013, now abandoned.

G06F 16/28 G060 10/06

(2012.01)

CPC G06F 16/284 (2019.01); G06Q 10/0631 (2013.01); YO2P 90/80 (2015.11)

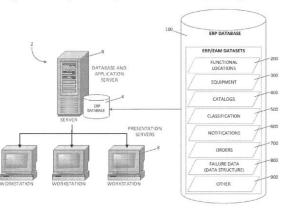
CPC ... G06F 16/284; G06Q 10/0631; Y02P 90/86 See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

Oct. 26, 2021

2003/0198180	A1*	10/2003	Cambron H04J 3/14
2005 000072 40		1.0005	370/216
2005/0007249	Al"	1/2005	Eryurek G05B 23/027 340/511
2006/0241907	A1*	10/2006	Armstrong G05B 23/0218
			702/182
2007/0035398	AI*	2/2007	Vesel G05B 23/0216
			340/572.1
2009/0077055		3/2009	Dillon G06F 16/337
2012/0123951	Al*	5/2012	Hyatt G06Q 10/10


* cited by examiner

Primary Examiner - Alford W Kindred Assistant Examiner - Lin Lin M Htay (74) Attorney Agent or Firm - Crump Law P.C

ABSTRACT

An information (ERP/EAM) system and equipment tax onomy for representing and managing of equipment, equipment subunits and component parts thereof across an enter prise that maps materialized physical objects to functional physical objects within a hierarchy of functional locations within the enterprise for all enterprise assets in accordance with applicable industry standards. The ERP/EAM system and the equipment taxonomy also provide multi-leveled failure reporting

9 Claims, 60 Drawing Sheets

Reliability **Dynamics**

Graham Macleod, Vice President of Asset Integrity and QMS, Precision Drilling

"I really liked the way that [Reliability Dynamics] interpreted a complex standard [ISO 14224] in relation to our application...it was exactly what we were looking for...its simplicity [for users] is what makes it great...insights from our [data/reports] are absolutely everything we possibly need."

Organization	Software	Work Scope
US Department of Energy	SAP	Add-on software and content implementation for Strategic Petroleum Reserves
Precision Drilling	SAP	Add-on content and configuration, corporate-global
Pembina Pipeline	SAP	Add-on software and content, corporate-global
QGOG-Constellation	Maximo	Content and methods, offshore drilling fleet
Maersk Drilling	SAP	Taxonomy definition development for offshore drilling equipment
Nexen Energy	SAP	 Content and methods implementation for Yemen Masila Block, methods later adopted corporate-wide Technical hierarchy restructuring for Long Lake Facility (oil sands)
Marathon Oil	SAP	Content and methods for corporate template development and implementation for Alvheim FPSO
Fortis-Alberta	SAP	Failure reporting and warranty management for AMI

Case History: The Nexen Masila Block

Nexen used ISO 14224 methods to increase Masila Block profits by US \$8.2 million annually

- Reduced maintenance costs for field power gen units by 64%
- Increased associated oil production by 53%

Digital Analytics and Condition-Based Maintenance Net \$8.2 Million Annually for... Tony Ciliberti PE on LinkedIn

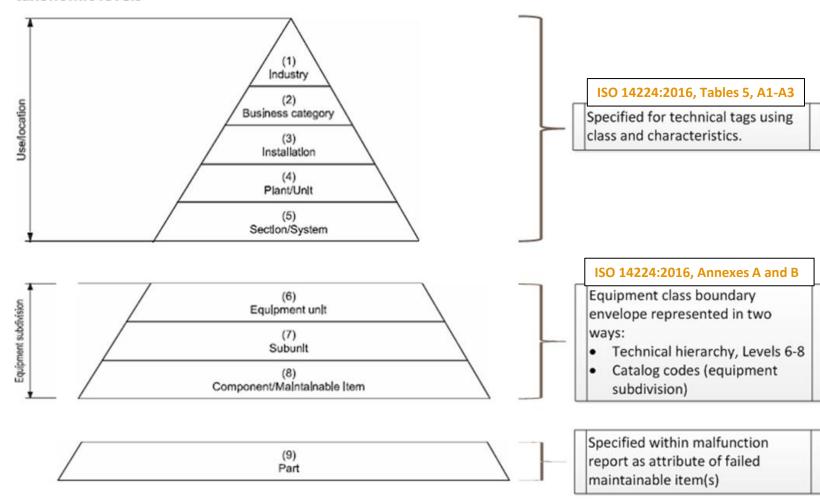
Overview The Masila Block Oil Field is in the Yemen Hadhramaut Desert. Oil production...

13 · 4 Comments

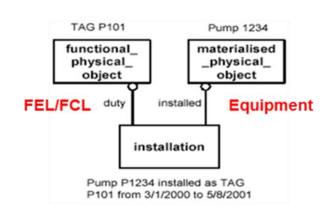
Thank you

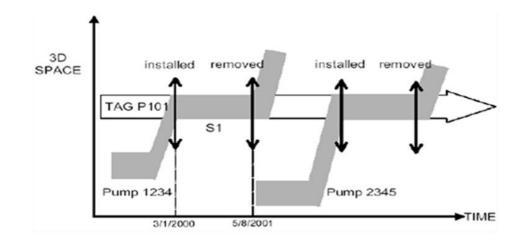
Tony Ciliberti PE

US Expert ISO/TC67/WG4 Reliability engineering & technology Principal Engineer, Reliability Dynamics



ISPM Master Data Overview

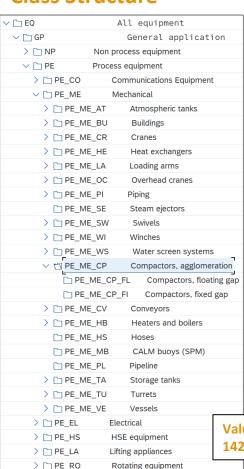

ISPM/ISO 14224 Data Mapping


ISO 14224:2016 Figure 3 — Taxonomy classification with taxonomic levels

Functional Location / Equipment Relationship ISO 15926-2:2003, Section E.3.3¹

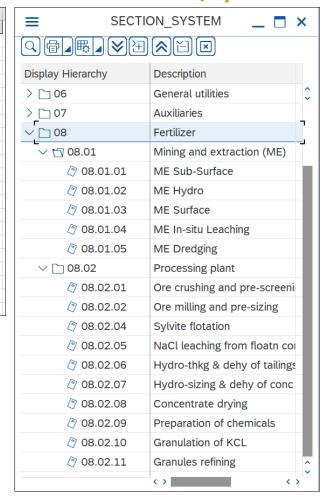
The duty represented by TAG P101, and Pump 1234 are coincident for the period of the installation, i.e. the state S1 of Pump 1234 that is installed as TAG P101 is in fact also a state of TAG P101. TAG P101 consists of those states of the pumps that are installed in this location.

ISO 15926-2 (Data Model) Industrial automation systems and integration—Integration of life-cycle data for process plants including oil and gas production facilities, Figures E.9 and E.10.


1. ISO 15926-2, Section E3.3 is referenced in ISO 14224:2016, Table 5, Footnote b.

Reliability Dynamics

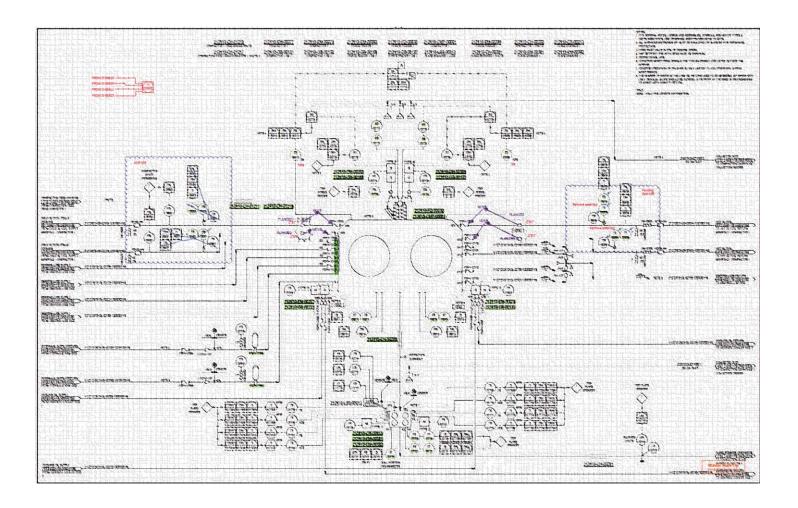
Classification Structure


Class Structure

Characteristics: Compactors, functional

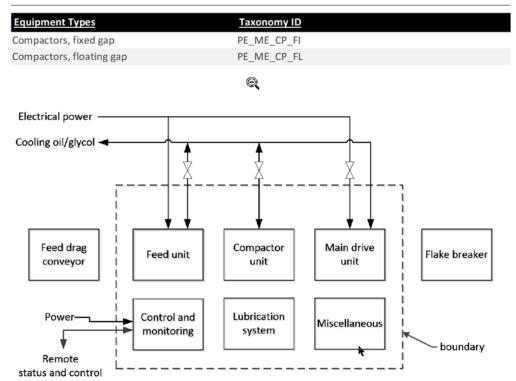
	A	В	С	D
1	Characteristic Name	Char. description	Characteristic Inherited	Imparting Class
2	MAX_PRESSING_FORCE	Maximum pressing force		
3	ROLLER_DIAMETER	Roller diameter		
4	EXTRUSION_THICKNESS	Extrusion thickness		
5	ROLLER_SPEED_RANGE	Roller speed range		
6	ROLLED_SHEET_OUTPUT_MAX	Maximum rolled sheet output		
7	GRANULAR_SIZE_RANGE	Maximum granular size		
8	FINAL_PRODUCT_OUTPUT_MAX	Maximum product output		
9	TOTAL_MAIN_DRIVE_POWER	Total main drive power		
10	INDUSTRY	Industry	✓	EQ
11	BUSINESS_CATEGORY	Business category	✓	EQ
12	INSTALLATION_CATEGORY	Installation category	✓	EQ
13	PLANT_UNIT_CATEGORY	Plant/Unit category	✓	EQ
14	SECTION_SYSTEM	Section/System		EQ
15	OPERATION_CATEGORY	Operation category	\checkmark	EQ
16	NO_REDUNDANT_UNITS	Number of redundant units	✓	EQ
17	NORMAL_OPERATING_MODE	Normal operating mode	✓	EQ
18	AMBIENT_CONDITIONS	Ambient conditions	✓	EQ
19	UTILIZATION_OF_CAPACITY	Utilization of rated capacity	✓	EQ
20	RELEVANT_STANDARDS	Relevant Standards and Regs	✓	EQ
21	PID_NUMBER	Process and Instr. Diagram No.	✓	EQ
22	LEGACY_ID	Legacy ID	✓	EQ

Value set: Section/System



Value set adapted from ISO 14224:2016, Table A.4

 Compile a tabular list of all technical tags from engineering drawings, SCADA, etc.

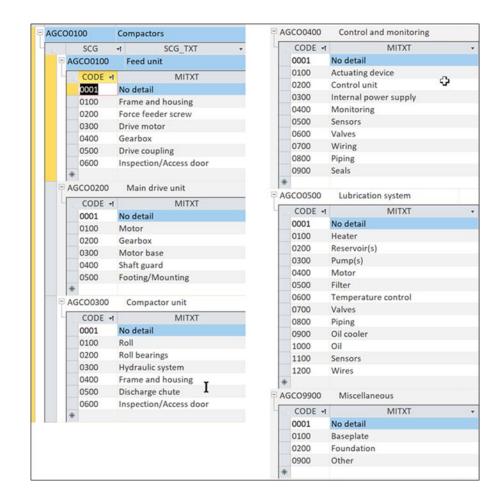

Equipment Boundary for Compactors

Extended ISO 14224:2016 Content

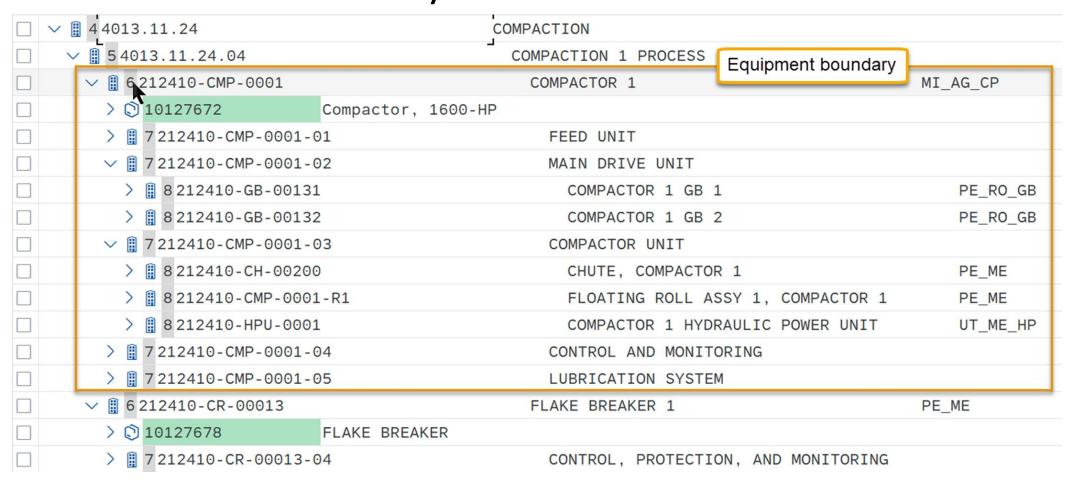
 Determine which tags numbers are within the equipment boundary

Equipment Class: Compactors, agglomeration

Taxonomy ID: PE_ME_CP



Boundary definition – Compactors

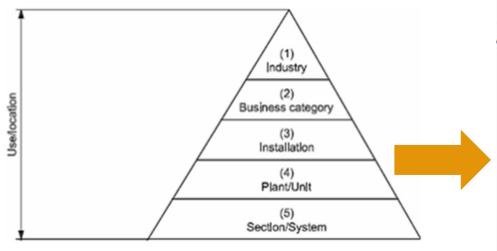

Equipment Subdivision for Compactors

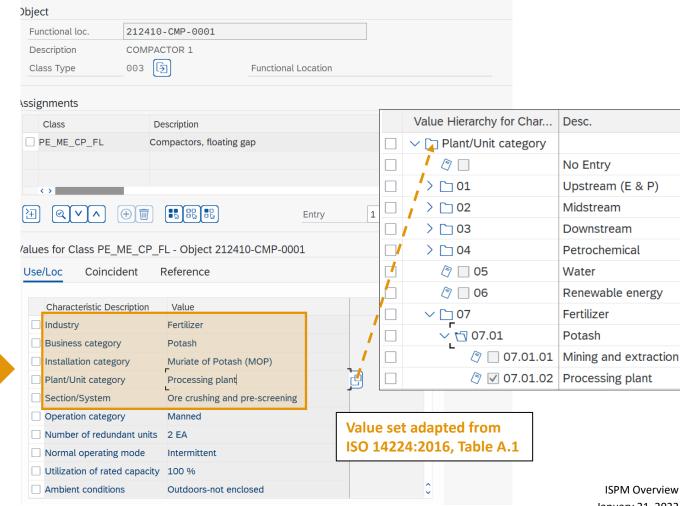
- 1. Identify the main unit
- 2. Map component tags into subunits
- 3. Assign subunit structures to the main unit

Compactor 1 Boundary Definition in the Technical Hierarchy

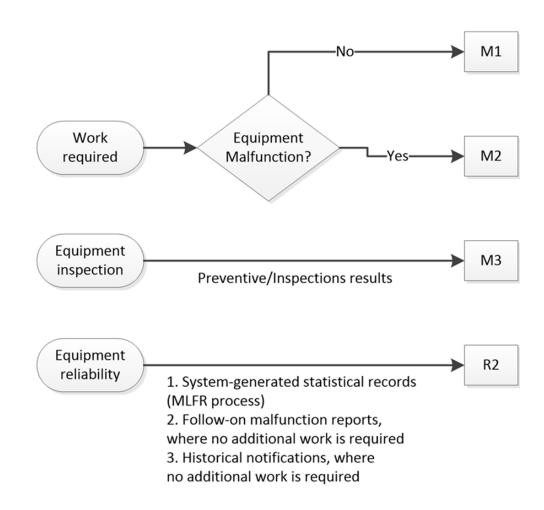
Equipment-Specific Data for Compactors

For each technical tag, assign:

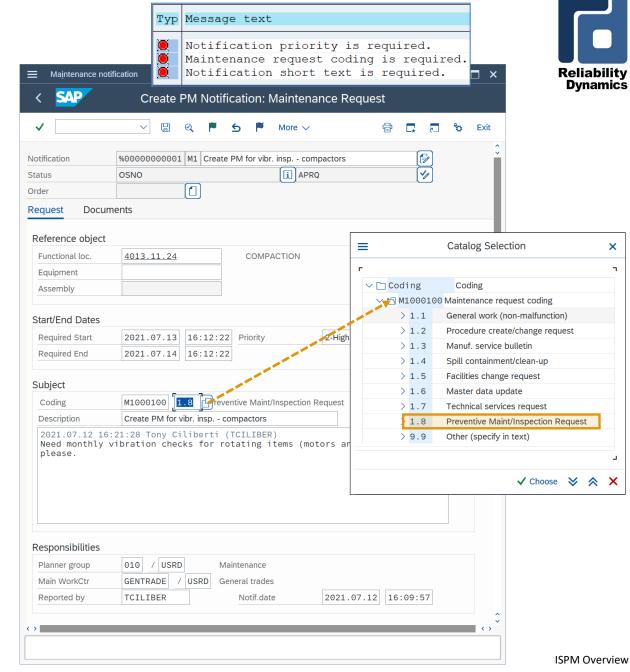

- Relevant classification ID
- Use/Location and equipment specific characteristics
- Reference examples in ISO 14224:2016, Table 5 and Annex A


PE_ME_CP Compactors, agglomeration					
Characteristic ID/Char. Values	<u>Descriptions</u>	<u>UOM</u>	<u>APPL</u>	<u>PR</u>	
FINAL_PRODUCT_OUTPUT_MAX	Maximum product output	kg/h	СО	Н	
GRANULAR_SIZE_RANGE	Maximum granular size	mm	СО	Н	
MAX_PRESSING_FORCE	Maximum pressing force	kN	СО	Н	
TOTAL_MAIN_DRIVE_POWER	Total main drive power	KW	СО	Н	
ROLLER_SPEED_RANGE	Roller speed range	rpm	СО	Н	
NUMBER_MAIN_DRIVE_MOTORS	Number of main drive motors	EA	EQ	Н	
ROLLER_DIAMETER	Roller diameter	mm	СО	M	
EXTRUSION_THICKNESS	Extrusion thickness	mm	СО	M	
ROLLED_SHEET_OUTPUT_MAX	Maximum rolled sheet output	kg/h	СО	M	
MAIN_DRIVE_MOTORS_TYPE	Main drive motors type		EQ	М	
01	Electrical				
02	Hydraulic				

- Compliant with ISO 14224 taxonomy classification
- Structured data input
- Standard schemata


ISPM Transactional Data Overview

Maintenance Categorization


Aligned with Data Requirements

- Three distinct categories and datasets
 - M1 Maintenance Request
 - M2 Failure/Malfunction Report
 - M3 Prev. Condition Report
- Each has different data requirements
 - Separation is important for data relevancy
 - Only relevant fields can be validated
 - Reference ISO 14224:2016, Figure 6

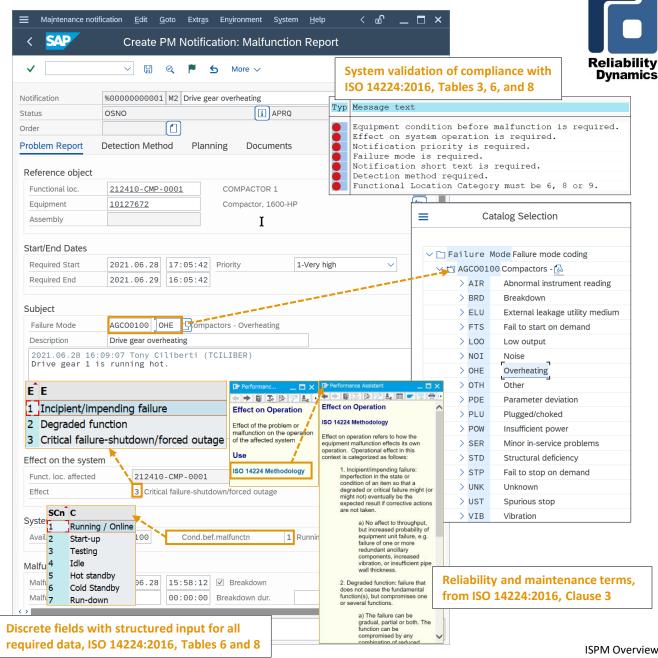
Maintenance Request

- Any non-malfunction request
- Coding is used to differentiate between work types
- Can be linked to other work by notification hierarchy

Malfunction Report

Work Initiation

- Logical work categorization, with one input form per category¹
- Specifications of required data per work category^{2,3,4}
- Discrete fields with structured input for each required datum
- System-validations to ensure compliance with specifications


Notes - ISO 14224:2016

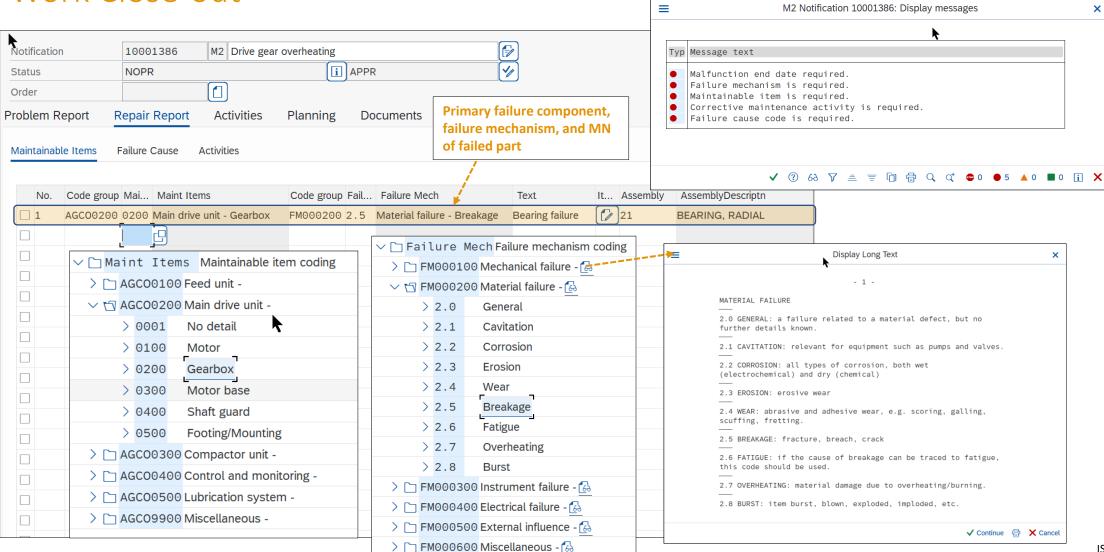
1. Figure 6 – Maintenance categories

2. Table 6 – Failure data

3. Table 8 – Maintenance data

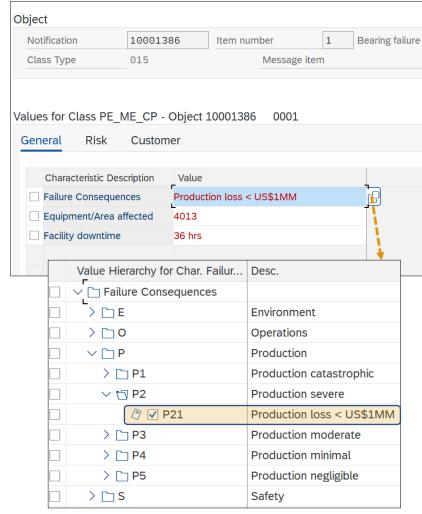
4. Table 3 – Reliability and maintenance parameters in relation to taxonomy levels

Malfunction Report


Reliability Dynamics

Validations check compliancy with

ISO 14224:2016, Tables 6 and 8, on


notification completion

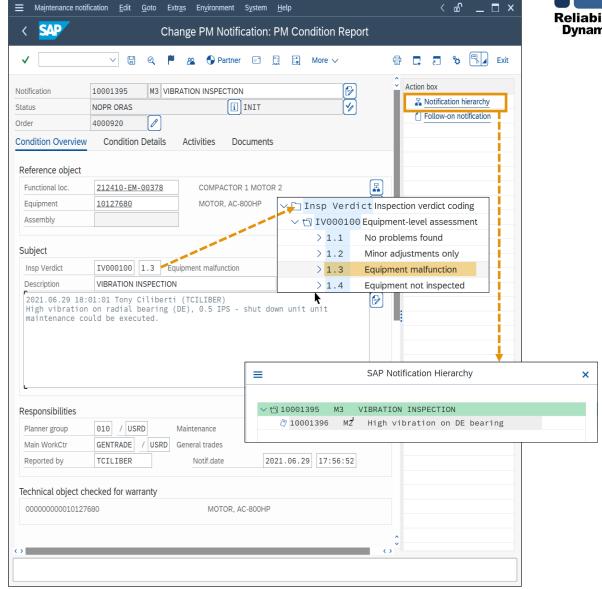
Work Close-out

Malfunction Report

Consequence Classification

ISO 14224:2016, Table C.2 – Failure consequence classification

Consequences	Category			
	Catastrophic	Severe	Moderate	Minor
	Failure that results in death or system loss	Severe injury, illness or major system damage	Minor injury, illness or system damage	Less than minor injury, illness or system damage
Safety	I Loss of lives Vital safe-	V Serious personnel injury	IX — Injuries requiring medical treatment	XIII — Injuries not requiring medical treatment
	ty-critical systems inoperable	 Potential for loss of safety functions 	 Limited effect on safety functions 	— Minor effect on safety function
Environmental	II	VI	X	XIV
	Major pollution	Significant pollution	Some pollution	No, or negligible, pollu- tion
Production	III	VII	XI	XV
	Extensive stop in pro- duction/operation	Production stop above acceptable limit ^a	Production stop below acceptable limit ^a	Production stop minor
Operational	IV	VIII	XII	XVI
	Very high mainte- nance cost	Maintenance cost above normal ac- ceptable ^a	Maintenance cost at or below normal acceptable ^a	Low maintenance cost
a It is nece	ssary to define acceptable	limits for each applicatio	n.	



Preventive Maintenance Results Recording

- One PM Condition Report per technical tag inspected, to record:
 - Inspection verdict
 - Condition details
 - Measurements taken
- Inspections linked to follow-on work by use of notification hierarchy
 - Follow-on notification generation is automated by the system
 - Notification hierarchy can be displayed and edited

